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Capillary waves of small amplitude on the surface of fluids with a constant
depth have been well studied [1]. Below 18 proposed an approximate method

for investigating capillary waves originating from the motion of fluid in a
channel with a bottom which has a pclygonal form.

1. Let us consider the steady potential flow of a perfect incompressible
welghtless fluld with a polygonal rigid boundary A4pCDp and free surface X7
in the plane g = x + 1y (¥ig.1). The angles of slope of sections AR, BC
and (p with respect to the x-axis are given. The fluid flows from 4 to
D and at infinity upstream the velocity of its undisturbed motlon is ¥, ;
¥ 1s the depth of the flow.
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Let R be the radius of curvature of the free surface (it is assumed
posltive if directed from the surface), T the coefficient of surface tension,

the density of the fluld, p the pressure in the fluid and P, the pres-
sure in the atmosphere.

It is known that on the free surface
T deé

P
R = Po—p or TVE=7(V2"V02) (1.1)

Here V¥ 1s the modulus of the velocity, and 9 18 the slope angle of
the veloclity with respect to the x-axls. Let , = ¢ +1§ be the complex flow
potential.

A zone of breadth y,= V,§F corresponds to the region of flow 1n the 4
plane.

We reflect the p region upon the ( = £ + {n region with the aid of the
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linear transformation

C =W v (1.2)
In the ( plane we qbtain a zone of breadth 4m. ; the free surface cor-

responds to the straight line n = gn and the rigid boundery of the flow to
the straight line n « 0

The solution of the problem can be represented in the form
2H Vodz . 1.3
Z“TS%PII(OHC (=%t =r+a) (1.3)
Here p(¢) 1s the Zhukovskili function.

We will regard the image of points B, C 1in the ( plane as given, then
on the straight line n = 0 the imsginary part of the function ¢) 1s
known. On the straight line n = §n the condition (1.1) should be fulfilled,
it can be easily reduced to the form

n df . T
a5 d—§--== —sigh r (a=-—————pV°,H ) (1.-4)

The dimensionless parameter o characterizes the degree of the influence
of the capillarity. With q = O the capillary forces are absent and on the
free surface r = O . For the case of small values of o (this esse will be
of interest later), on the free surface the value of r 1is smell end we oan
approximate equality (1.3) by letting ainhr =r. The error of such & sub-
stitution for smell r has the order !/ ,p3.

Thus, we arrive at the following problem. It is required to determine
the function {t;), which is analytical in the region — o0« § <09,
01K Y,n, 3f on the streight line n = O the values of its gina

part 8,(g) are known, and on the straight line n = the real wn
nary p&;tg of the tunci';ion are connectéd by the relntig;:

g W
nE=—asy dE (1.5)

(vy subscript o we will denofie the functions ' and § for ne0, and
by subscript 1 for n = gm).

imegi~

®, VWriting down the expression for the function s(¢) in terms of 8, (),
r,(g), and subsequently o,(g), 6,(z) [2], and subtracting from the first
expresslon the second one, we can obtain Formula

0 o -}
at’ dt’ ry ,
) o=t wpien - \awpe e

for r, its expression in terms of ¢, from (1.5); we arrive at

(detsiled deduction of this formuls is given in (3]). Substituting in (2.1)
» > S, the integro-
differential equation for ¢,

© o )
dt’ dt’ ) d6, , s
2 Seam=2 S 0 W-—Fd‘ﬁ‘ S —E-g-uch(i—i)dﬁ (2.2)
—oco —o0 —c0

Let ¢ =g,, g, be the image of the points 5 and ¢ in the ¢ Pplane,
8d 8g5, 80,5 855 8re the values of g, for sections 4B, BC and (D, respec-
tively.

Applying to (2.2) the two-sided transform of Laplace [4], we obtain

e-tico

2
i
O O=7m7 2 OO Je= | Quldp (2.3)
k=1 c—ioo

exp [p(t— g/.)]
Q) = P (/yampsint/,ap 4 cosl/ ap)
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Here the integration is carriad out in the plane of auxiliary complex

variable p = 0 + {7 along any straight line, parallel to the imaginary axis
and lying in the zgone O < g< 1 ,

Using Jordan's lemma, we can prove that for - 8,> 0 the integral of
Jx 18 equal to the sum of the residues of the integrand at all poles located
to the left of the line of integration, and for £ — £, ,< O the integral of
Jx 1s equal to the sum of the residues taken with the 1nverse sign at all
poles to the right of the line of integration.

The integrand @, (p) has no poles outside of the coordinate axes ¢s=0,
7=0 ., The poilnt p=0 will be & pole of first order; for =0, ¢ § O
the function @,(p) has poles of first order at the points g¢,> 0O and
0..< 0O, and for ¢g=0 , 1 # O the function has the same poles at the points
+ir, and - {7, which are determined, respectively, from the conditions

—oang, /2= cot(w0,/2), o,=—0,, 22n—1<K0, <2n
anTy/ 2 = coth (W1, / 2) (2.4)

Taking into account {2.4), we can write down the residues of the function
¢, (p) in the following form:

2 exp [0, (§ — &)]sin(no,/ 2)

p:an" P =— 7 "5 [{—asn® (1s,/ 2)]
2 exp [—ac, (E—E))sin(ns,/2)
p__fisc'?k P =—7 "5 H—cu e,/ 2)]
2 exp [ity (§ — §;) hinn(nv,/ 2)
o8 Qe (P) = — = 1T ot (e /D),
2 exp [— ity (§ — §;) ]sink(riry / 2)
o0 ) = — o T Tt (%07 2]

res Q. (») =1
p=0
Thus, we obtain, that for § —§ <O

o0
_ . __ 2 svoxpls, (E—E)lsin(nc,/2)
Jk—Jk —-? ) s, [1—¢5in’(“°n/ 2)] (2.5,

1, 9 o exp [o, (§ — Ek)] sin (no,;/ 2) 2.6
= - .6)
dt n " 1 — asin® (no,, /2)

and for §—§, >0

Y L Tt Y et L BT ok )
T A a9 w el @7

1

Wt 2 E} exp(—a, —EIsin(0,/2) _ 4 sin Ty @ — §y)luainre/2)
& A T—aaim (w,/2)" T I e (57D 2.8)
From Pig.3 it can be seen that for »n increasing from 1 to infinity

the quantity sin(mo, /2) will alternate its sign and monotonously decrease
in modulus,

Therefore the series, entering Expressions (2.5) to (2.8), reprsent the
alternate in sign terms monotonously decreasing in their absolute value.
In addition
aj,- ar
=

dg, By dg, By

Ti lgmty = Ti* lgag,
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the second equality follows from the consideration of the reeidues of the
funetion ¢, (p) for £'= £, .

From (2.3) we obtain Expressions
for ¢,({e)

8) = (Bpy — Bg) J1~ + (B2 — B4y) J5~
for —0<ELE

0, = (B — Bo0) St (8o, — B51) Jo~
for 5, <E< &

0y = {80y — Boo) Ji+ P (Bga — 0yy) o+
for B2 S E<<oo

Analogous expressions are obtained from (1.5) for r, (g)

daJ -
ry= o 121;_ [(900 —'901) dE + (901 "—902) C;E ] for ,_— oo < S < El
dJe
r=a —g— [(600——— 0p) — d§ + (Bg; — Bg2) ; ] for ESESE
T+
"1:a_g’[(em—001)’tjlg’+(eo1‘eoa) '_gzg‘] for EaSKES oo

It 1s obvious that r, -0 for ¢ - O, and consequently the obtained
formulas are applicable for the small values of o . If in {2.5),(2.7) we
take o = O, and also taking into account that for this case o,= 2 -1,
we wlll have

~=_nz_ Z *“ (=™ oxp [2n— 1) (§-§,‘.)]=% tan-t [exp (§ — §)]
=1

Ir=1—2 2( Zexp [(1—2n) (5 — §)1 = 2 wnn [oxp (E — )]
Hence =1
0= 2 D) (O —Opey) et [exp (5 — )] (— o0 <E<00)
k=1

It 1s easy to see that this formula gives the solution of the problem for
the condltion r,= O .

3., Let us consider a fluld flow over a vertical step, l.e. assuming the
following values: 0 = Op = 0, 0y = — Vo7, §;, = — B, §; = f. Then we will
have in particular

n <1 expl—o, & +P)—expl—s, E—P)]

ry = a e s _

2 ,f_:ll 1 —osin® (10, / 2)
2ounsinh (T, / 2)

K 1+ %sink (U707 2) siu pry cos £t for PCES o0

siu (g, / 2) 4

For large values of ¢ (far from the step downstream) (3.1)

] 2amsioh(nTy/ 2) . 0. — Asinb( T, / 2)
" T T g (g 2) ST e 00T T T e (10 / 2]

sin P, sin &1,
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For 0<Ca<C0.25 we can assume gamTe= coth {n7,/2) = 1 with great accu-
racy.
Therefore,

2aumsinb (nT, / 2) 4sinh(117, / 2) _ 2amsih(1/a) ()
1 oginkf (0707 2)  To [1 + osint? (T /2)] 1 4+ asmif (1/0) = (

and Formulas (3.1) reduce to the form

2 2 . 2B
rlzk(a)sinsa&cosia‘ , 0; = — k() sin - sin =~

We present the value of x for certaln values of a .
a= I s s Yz s o 0
k= 0.22009 0.08460 0.03114 0.01146 0.00422 0.00155 0

From (1.3) we have the parametric equations for the free surface away from
the step

z=oH S exp (h cos u) cos (hsin u) du 28
(h =k(a)sin — , u= gro)

. na.
y=—oH S exp (k cos u) sin (hsin u) du
Taking into account that A, 1is small, it 1s convenient to compute the
obtained integral, expa.nding the integrand in a power series of n . With
accuracy to the order of »® we will have
z = o H (u - hsin u -4 /4 h? sin 2u), y = oH (h cos u -4 /3% cos 2u)
Hence it follows that the wave length A and amplitude & are
. 2B
A =2naH, 8 = Hak () |sin -

Thus, the wavelength does not depend on the height of the step, and the
quantity 6 for the monotonous change of the step helght oscillates in the
interval 0 <8 <{ Ha k(o) (the relation between the step height and the quan-
tity B can be established approximately by solving the problem for the con-
dition r = 0) . In exactly the same manner we can investigate the flow in
corner, by placing g,= 2, . For this case we obtaln

.leoo—‘eoxl

A == 2naH, §=H o

ak (o)

In general for any flow of the type investigated above the expressilon for
wavelength A remains invariant.
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